Sunday’s Sudoku puzzle from Toronto Star (June 19, 2011) is another example of a locked puzzle. Its key is elimination by confinement. Here is the puzzle and its annotated step-by-step solution.
For more information on SP Notation: First article – Sudoku Puzzle Notation and Elimination techniques
Toronto Star, June 19, 2011 Page IN2 Level: Hard 000009016 501000003 000058090 907000020 010000030 030000907 080360000 200000304 150700000 There are 7 initial steps and 3 of which are not so easy to spot. 1 B2 = 9 BR 2 C9 = 3 BR 3 D3 = 1 BR 4 E1 = 3 B 5 F4 = 3 C 6 G1 = 5 BR 7 I3 = 2 N The puzzle gets jammed after step 8. 8 A3 = 3 BCR (jammed) 9 B1 = 2 C 10 A1 = 7 R 11 D1 = 4 N 12 A7 = 4 N 13 B8 = 7 BC 14 C1 = 8 BNR 15 G3 = 7 R 16 C7 = 9 N 17 C8 = 6 B 18 H7 = 7 BCR 19 B3 = 6 BR 20 C3 = 4 N 21 I9 = 9 BC 22 B4 = 4 BCN And now the puzzle is locked! |
First steps
Locked Puzzle
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The key to unlock the puzzle is by analyzing the possible locations for 1. The cells have been highlighted in the figure on the right. Note that in the center-right block, 1 is confined on row 4 to G4 and I4. This eliminates 1 from the rest of row 4, particularly in E4. Similarly, 1 can be eliminated from F7 because 1 is confined to G7 and I7 in the bottom-right block. The elimination of 1 from E4 leaves 8 as the only candidate in E4. This unlocks the puzzle. 23 GI4 : 1 B 24 E4 / 1 R 25 E4 = 8 N The remainder of the steps to complete the puzzle are: 26 D8 = 8 BC 27 I5 = 8 C 28 A5 = 6 N 29 A6 = 8 BCR 30 D5 = 9 C 31 E8 = 9 BR 32 H8 = 5 N 33 E6 = 1 C 34 F7 = 5 BR 35 F8 = 1 NR 36 G5 = 4 N 37 I4 = 5 BC 38 I7 = 1 N 39 C5 = 5 R 40 D4 = 6 N 41 D6 = 5 BC 42 E9 = 4 C 43 F6 = 4 BR 44 G2 = 8 N 45 G4 = 1 BCR 46 G7 = 2 NR 47 H2 = 4 BCR 48 H6 = 6 N 49 C6 = 2 BCNR 50 D2 = 2 CN 51 F2 = 6 BCR 52 F9 = 2 BNR 53 G9 = 6 BCNR 54 H9 = 8 BCNR 55 E2 = 7 BNR 56 E5 = 2 BCR 57 F5 = 7 CN |
The elimination of 1 from E4 and F7 can also be made by observing columns G and I. Along these 2 columns, 1 can only be placed along rows 4 and 7. Therefore, 1 can be eliminated from the rest of rows 4 and 7 (E4 and F7). +
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No comments:
Post a Comment