At this point, the puzzle is jammed …
| A | B | C | D | E | F | G | H | I | |
| 1 | 7 | 6 | 1 | 8 | 9 | ||||
| 2 | 6 | 4 | 7 | 2 | |||||
| 3 | 1 | 9 | 6 | ||||||
| 4 | 6 | 8 | 7 | 1 | 4 | ||||
| 5 | 1 | 4 | 6 | 2 | |||||
| 6 | 7 | 4 | 9 | 5 | 3 | 6 | 1 | ||
| 7 | 6 | 9 | 3 | 4 | |||||
| 8 | 4 | 1 | 6 | ||||||
| 9 | 5 | 7 | 6 | 
13     I5 = 7 C
… And the puzzle is jammed again …
14 I9 = 8 C
… And can you believe it? After being jammed twice, it is now locked!
| A | B | C | D | E | F | G | H | I | |
| 1 | 7 | 6 | 1 | 8 | 9 | ||||
| 2 | 6 | 4 | 7 | 2 | |||||
| 3 | 1 | 9 | 6 | ||||||
| 4 | 6 | 8 | 7 | 1 | 4 | ||||
| 5 | 1 | 4 | 6 | 2 | 7 | ||||
| 6 | 7 | 4 | 9 | 5 | 3 | 6 | 1 | ||
| 7 | 6 | 9 | 3 | 4 | |||||
| 8 | 4 | 1 | 6 | ||||||
| 9 | 5 | 7 | 6 | 8 | 
There is a full house in column A, because cells A6 and A7 may only house the digits 2 and 8. Therefore, the digits 2 and 8 can be eliminated from the other cells in the column (A2, A5 and A9). Consequently, 3 is the only possible digit in A9.
15 A67 : 28 N
16 A9 / 2 C
17 A2 / 8 C
18 A5 / 8 C
19 A9 = 3 N
… And yet locked again!  (Click here for continuation - Part 3)
| A | B | C | D | E | F | G | H | I | |
| 1 | 7 | 6 | 1 | 8 | 9 | ||||
| 2 | 6 | 4 | 7 | 2 | |||||
| 3 | 1 | 9 | 6 | ||||||
| 4 | 6 | 8 | 7 | 1 | 4 | ||||
| 5 | 1 | 4 | 6 | 2 | 7 | ||||
| 6 | 28 | 7 | 4 | 9 | 5 | 3 | 6 | 1 | |
| 7 | 28 | 6 | 9 | 3 | 4 | ||||
| 8 | 4 | 1 | 6 | ||||||
| 9 | 3 | 5 | 7 | 6 | 8 | 
 
 
No comments:
Post a Comment